If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2-24y+2=0
a = 8; b = -24; c = +2;
Δ = b2-4ac
Δ = -242-4·8·2
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-16\sqrt{2}}{2*8}=\frac{24-16\sqrt{2}}{16} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+16\sqrt{2}}{2*8}=\frac{24+16\sqrt{2}}{16} $
| N+4n=20;5 | | (6x-1)+76=180 | | 6.5-0.1q=20-0.2q | | 7,50+0,75x=10+0,5x | | 26x+24=-39x-$ | | 8×k÷3=32 | | 534=18w+38 | | 0.12y+0.25=-0.35 | | h=-16^2+46+6 | | 6×m÷7=30 | | -10=35y | | E^(2-3x)=125 | | (2x+5)^2+32=-4 | | 60+26x=180 | | 0,05x+52=65 | | (6-3)=(2x-4x)=5 | | 2x+76=5x-23 | | 2x+8•2=20 | | X^2+(x+1)^2=421 | | 16=u/4-8 | | Y-810=y | | 7m+4=m+22 | | (4x+3)^2=289 | | 3(x+5)=3/5 | | 7(x+1)=12 | | (1,3)m=1/4 | | 41–2n=2+n | | 1m/5=22 | | 4(x+11)-5=5x-2 | | 1/8^2-7/10x+3/8=0 | | 100(2x+3)51=180 | | 120=2w+L |